

Date Planned : / /	Daily Tutorial Sheet-5	Expected Duration : 90 Min
Actual Date of Attempt : / /	Level-1	Exact Duration :

61.	The Boltzmann	constant	(k _B) is	3 :
-----	---------------	----------	----------------------	-----

(A)	RN_A

(B)
$$\frac{N_A}{R}$$

(C)
$$\frac{R}{N_A}$$

$$(\mathbf{D}) \qquad \frac{R}{N_A} \times T$$

62. The dimensions of Van der Waals constants a and b are respectively,

(A) bar
$$L^2 \text{ mol}^{-2} \text{ and } L \text{ mol}^{-1}$$

(B) bar
$$L^2 \text{ mol}^{-1}$$
 and $L^{-1} \text{mol}^{-1}$

(C) bar
$$L^2 \text{ mol}^2$$
 and $L^{-1} \text{ mol}^{-1}$

(D)
$$bar^{-1} L^2 mol^{-2} and L^{-2} mol^{-1}$$

63. Which of the following gases has the highest value of the van der Waals constant a?

a / bR

(A) CCl₄(g)

(B) $NH_3(g)$

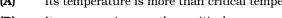
(C) $CO_2(g)$

(D) $H_2O(g)$

64. The Boyle temperature for real gases is given by :

65. A 4.40 g piece of solid CO_2 (dry ice) is allowed to sublime in a balloon. The final volume of the balloon is 1.00 L at 300 K. What is the pressure (atm) of the gas?

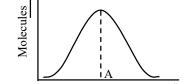
A He atom at 300 K is released from the surface of the earth to travel upwards. Assuming that it undergoes no collision with other molecules, how high will it be before coming to rest?



(D)
$$9.53 \times 10^4 \text{ m}$$

67. An ideal gas obeying kinetic gas equation can be liquefied if:

(A) Its temperature is more than critical temperature


68. The pressure of real gas is less than the pressure of an ideal gas because of:

- (A) Increase in collisions
- **(B)** Increase in intermolecular forces
- **(C)** Finite size of molecules
- **(D)** Statement is incorrect

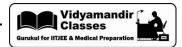
69. Distribution of molecules with velocity is represented by the curve as shown; velocity at point A is:

(A)
$$\sqrt{\frac{3RT}{M}}$$

(B)
$$\sqrt{\frac{2RT}{M}}$$

(C) $\sqrt{\frac{8RT}{\pi M}}$

(D) $\sqrt{\frac{RT}{M}}$


70. A balloon filled with ethyne is pricked with a sharp point and quickly dropped in a tank of H_2 gas under identical conditions. After a while the balloon will have

(A) Shrunk

(B) Enlarged

(C) Completely collapsed

(D) Remained unchanged in size

If X_m , X_p and X_v represent mole fraction, pressure fraction and volume fraction respectively then: 71.

(A)
$$X_{\rm m} = X_{\rm p} = X_{\rm v}$$

(B)
$$X_m = \frac{1}{X_p} = \frac{1}{X_v}$$
 (C) $X_m = X_p = \frac{1}{X_v}$ **(D)** $\frac{1}{X_m} = \frac{1}{X_p} = X_v$

$$X_{m} = X_{p} = \frac{1}{X_{v}} \quad (D)$$

$$\frac{1}{X_{\rm m}} = \frac{1}{X_{\rm p}} = X_{\rm p}$$

- **72**. A 100 mL flask contained H2 at 200 Torr, and a 200 mL flask contained He at 100 Torr. The two flask were then connected so that each gas filled their combined volume. Assuming no change in temperature, total pressure is:
 - 300 Torr (A)
- (B) 66.66 Torr
- (C) 150 Torr
- (D) 133.33 Torr
- **73**. Ratio of the rate of diffusion of He to H_2 at $0^{\circ}C$ is same in the case :
 - (A) When temperature is changed to 100°C
 - **(B)** When O2 and CH4 are taken instead of He and H2
 - When volume of the flask is doubled (C)
 - All the above are correct **(D)**
- 74. Which of the following statements is not true about the effect of an increase in temperature on the distribution of molecular velocities in a gas?
 - (A) The most probable velocity increases
 - The fraction of the molecules with the most probable speed increases **(B)**
 - (C) The distribution becomes broader
 - **(D)** The area under the curve remains unaffected
- **75**. Which of the following comparisons of the average kinetic energy and the average molecular speeds of H₂ and N2 gases at 300 K is CORRECT?

	List 1 [Average kinetic energy]	List 2 [Average molecular speed]
(A)	$H_2 = N_2$	$H_2 = N_2$
(B)	$H_2 < N_2$	$H_2 > N_2$
(C)	$H_2 = N_2$	H ₂ < N ₂
(D)	$H_2 = N_2$	$H_2 > N_2$

135